
5

Chapter 2

2.Calling Convention Implementations

This chapter describes the differences between o32, n32, and n64 ABIs with respect to
calling convention implementations. Specifically, this chapter describes:

• “Native 64-Bit (N64) and N32 Subprogram Interface for MIPS Architectures” covers
the 64-bit subprogram interface. This interface is also used in the n32 ABI.

• “Implementation Differences” identifies differences in the 32-bit and 64-bit
implementations C programming language and explains why it’s easier to port to
n32 rather than to 64 bits.

• “ABI Attribute Summary” lists the important attributes for the o32 and n32/64-bit
ABI implementations.

Native 64-Bit (N64) and N32 Subprogram Interface for MIPS Architectures

This section describes the internal subprogram interface for native 64-bit (n64) and n32
programs. This section assumes some familiarity with the current 32-bit interface
conventions as specified in the MIPS application binary interface (ABI). The transition to
native 64-bit code on the MIPS R8000 requires subprogram interface changes due to the
changes in register and address size.

The principal interface for 64-bit native code is similar to the 32-bit ABI standard, with
all 32-bit objects replaced by 64-bit objects. Note that square brackets [] indicate different
n32-bit and o32-bit ABI conventions.

In particular, this implies:

• All integer parameters are promoted (that is, sign- or zero-extended to 64-bit
integers and passed in a single register). Typically, no code is required for the
promotion.

• All pointers and addresses are 64-bit objects. [Under n32, pointers and addresses are
32 bits.]

6

Chapter 2: Calling Convention Implementations

• Floating point parameters are passed as single- or double-precision according to the
ANSI C rules. [This is the same under n32.]

• All stack parameter slots become 64-bit doublewords, even for parameters that are
smaller (for example, floats and 32-bit integers). [This is also true for n32.]

In more detail, the 64-bit native calling sequence has the following characteristics.

• All stack regions are quadword aligned. [The 32-bit ABI specifies only doubleword
alignment.]

• Up to eight integer registers ($4 .. $11) may be used to pass integer arguments. [The
32-bit ABI uses only the four registers $4 .. $7.]

• Up to eight floating point registers ($f12 .. $f19) may be used to pass floating point
arguments. [The 32-bit ABI uses only the four registers $f12 .. $f15, with the odd
registers used only for halves of double-precision arguments.]

• The argument registers may be viewed as an image of the initial eight doublewords
of a structure containing all of the arguments, where each of the argument fields is a
multiple of 64 bits in size with doubleword alignment. The integer and floating
point registers are distinct images, that is, the first doubleword is passed in either $4
or $f1, depending on its type; the second in either $5 or $f1; and so on. [The 32-bit
ABI associates each floating point argument with an even/odd pair of integer or
floating point argument registers.]

• Within each of the 64-bit save area slots, smaller scalar parameters are
right-justified, that is, they are placed at the highest possible address (for big-endian
targets). This is relevant to float parameters and to integer parameters of 32 or fewer
bits. Of these, only int parameters arise in C except for prototyped cases – floats are
promoted to doubles, and smaller integers are promoted to int. [This is true for the
32-bit ABI, but is relevant only to prototyped small integers since all the other types
were at least register-sized.]

• 32-bit integer (int) parameters are always sign-extended when passed in registers,
whether of signed or unsigned type. [This issue does not arise in the 32-bit ABI.]

• Quad-precision floating point parameters (C long double or Fortran REAL*16) are
always 16-byte aligned. This requires that they be passed in even-odd floating point
register pairs, even if doing so requires skipping a register parameter and/or a
64-bit save area slot. (The 32-bit ABI does not consider long double parameters,
since they were not supported.)

• Structs, unions, or other composite types are treated as a sequence of doublewords,
and are passed in integer or floating point registers as though they were simple

Native 64-Bit (N64) and N32 Subprogram Interface for MIPS Architectures

7

scalar parameters to the extent that they fit, with any excess on the stack packed
according to the normal memory layout of the object. More specifically:

– Regardless of the struct field structure, it is treated as a sequence of 64-bit
chunks. If a chunk consists solely of a double float field (but not a double,
which is part of a union), it is passed in a floating point register. Any other
chunk is passed in an integer register.

– A union, either as the parameter itself or as a struct parameter field, is treated
as a sequence of integer doublewords for purposes of assignment to integer
parameter registers. No attempt is made to identify floating point components
for passing in floating point registers.

– Array fields of structs are passed like unions. Array parameters are passed by
reference (unless the relevant language standard requires otherwise).

– Right-justifying small scalar parameters in their save area slots
notwithstanding, struct parameters are always left-justified. This applies both
to the case of a struct smaller than 64 bits, and to the final chunk of a struct
which is not an integral multiple of 64 bits in size. The implication of this rule is
that the address of the first chunk’s save area slot is the address of the struct,
and the struct is laid out in the save area memory exactly as if it were allocated
normally (once any part in registers has been stored to the save area). [These
rules are analogous to the 32-bit ABI treatment – only the chunk size and the
ability to pass double fields in floating point registers are different.]

• Whenever possible, floating point arguments are passed in floating point registers
regardless of whether they are preceded by integer parameters. [The 32-bit ABI
allows only leading floating point (FP) arguments to be passed in FP registers; those
coming after integer registers must be moved to integer registers.]

• Variable argument routines require an exception to the previous rule. Any floating
point parameters in the variable part of the argument list (leading or otherwise) are
passed in integer registers. Several important cases are involved:

– If a varargs prototype (or the actual definition of the callee) is available to the
caller, it places floating point parameters directly in the integer register
required, and no problems occur.

– If no prototype is available to the caller for a direct call, the caller’s parameter
profile is provided in the object file (as are all global subprogram formal
parameter profiles), and the linker (ld/rld) generates an error message if the
linked entry point turns out to be a varargs routine.

8

Chapter 2: Calling Convention Implementations

Note: If you add –TENV:varargs_prototypes=off to the compilation command
line, the floating point parameters appear in both floating point registers and
integer registers. This decreases the performance of not only varargs routines
with floating point parameters, but also of any unprototyped routines that pass
floating point parameters. The program compiles and executes correctly;
however, a warning message about unprototyped varargs routines still is
present.

– If no prototype is available to the caller for an indirect call (that is, via a function
pointer), the caller assumes that the callee is not a varargs routine and places
floating point parameters in floating point registers (if the callee is varargs, it is
not ANSI-conformant).

• The portion of the argument structure beyond the initial eight doublewords is
passed in memory on the stack and pointed to by the stack pointer at the time of
call. The caller does not reserve space for the register arguments; the callee is
responsible for reserving it if required (either adjacent to any caller-saved stack
arguments if required, or elsewhere as appropriate.) No requirement is placed on
the callee either to allocate space and save the register parameters, or to save them
in any particular place. [The 32-bit ABI requires the caller to reserve space for the
register arguments as well.]

• Function results are returned in $2 (and $3 if needed), or $f0 (and $f2 if needed), as
appropriate for the type. Composite results (struct, union, or array) are returned in
$2/$f0 and $3/$f2 according to the following rules:

– A struct with only one or two floating point fields is returned in $f0 (and $f2 if
necessary). This is a generalization of the Fortran COMPLEX case.

– Any other struct or union results of at most 128 bits are returned in $2 (first 64
bits) and $3 (remainder, if necessary).

– Larger composite results are handled by converting the function to a procedure
with an implicit first parameter, which is a pointer to an area reserved by the
caller to receive the result. [The 32-bit ABI requires that all composite results be
handled by conversion to implicit first parameters. The MIPS/SGI Fortran
implementation has always made a specific exception to return COMPLEX
results in the floating point registers.]

• There are eight callee-saved floating point registers, $f24..$f31 for the 64-bit
interface. There are six for the n32 ABI, the six even registers in $f20..$f30. [The
32-bit ABI specifies the six even registers, or even/odd pairs, $f20..$f31.]

• Routines are not be restricted to a single exit block. [The 32-bit ABI makes this
restriction, though it is not observed under all optimization options.]

Native 64-Bit (N64) and N32 Subprogram Interface for MIPS Architectures

9

There is no restriction on which register must be used to hold the return address in exit
blocks. The .mdebug format was unable to cope with return addresses in different places,
but the DWARF format can. [The 32-bit ABI specifies $3, but the implementation
supports .mask as an alternative.]

PIC (position-independent code, for DSO support) is generated from the compiler
directly, rather than converting it later with a separate tool. This allows better compiler
control for instruction scheduling and other optimizations, and provides greater
robustness.

In the 64-bit interface, gp becomes a callee-saved register. [The 32-bit ABI makes gp a
caller-saved register.]

Table 2-1 specifies the use of registers in native 64-bit mode. Note that “Caller-saved”
means only that the caller may not assume that the value in the register is preserved
across the call.

Table 2-1 Native 64-Bit and N32 Interface Register Conventions

Register Name Software Name Use Saver

$0 zero Hardware zero

$1 or $at at Assembler
temporary

Caller-saved

$2..$3 v0..v1 Function results Caller-saved

$4..$11 a0..a7 Subprogram
arguments

Caller-saved

$12..$15 t4..t7 Temporaries Caller-saved

$16..$23 s0..s7 Saved Callee-saved

$24 t8 Temporary Caller-saved

$25 t9 Temporary Caller-saved

$26..$27 kt0..kt1 Reserved for kernel

$28 or $gp gp Global pointer Callee-saved

$29 or $sp sp Stack pointer Callee-saved

10

Chapter 2: Calling Convention Implementations

Table 2-2 shows several examples of parameter passing. It illustrates that at most eight
values can be passed through registers. In the table note that:

• d1..d5 are double precision floating point arguments

• s1..s4 are single precision floating point arguments

$30 s8 Frame pointer (if
needed)

Callee-saved

$31 ra Return address Caller-saved

hi, lo Multiply/divide
special registers

Caller-saved

$f0, $f2 Floating point
function results

Caller-saved

$f1, $f3 Floating point
temporaries

Caller-saved

$f4..$f11 Floating point
temporaries

Caller-saved

$f12..$f19 Floating point
arguments

Caller-saved

$f20..$f23
(32-bit)

Floating point
temporaries

Caller-saved

$f24..$f31
(64-bit)

Floating point Callee-saved

$f20..$f31 even
(n32)

Floating point
temporaries

Callee-saved

$f20..$f31 odd
(n32)

Floating point Caller-saved

Table 2-1 (continued) Native 64-Bit and N32 Interface Register Conventions

Register Name Software Name Use Saver

Native 64-Bit (N64) and N32 Subprogram Interface for MIPS Architectures

11

• n1..n3 are integer arguments

Table 2-2 Native 64-Bit and N32 C Parameter Passing

Argument List Register and Stack Assignments

d1,d2 $f12, $f13

s1,s2 $f12, $f13

s1,d1 $f12, $f13

d1,s1 $f12, $f13

n1,d1 $4,$f13

d1,n1,d1 $f12, $5,$f14

n1,n2,d1 $4, $5,$f14

d1,n1,n2 $f12, $5,$6

s1,n1,n2 $f12, $5,$6

d1,s1,s2 $f12, $f13, $f14

s1,s2,d1 $f12, $f13, $f14

n1,n2,n3,n4 $4,$5,$6,$7

n1,n2,n3,d1 $4,$5,$6,$f15

n1,n2,n3,s1 $4,$5,$6, $f15

s1,s2,s3,s4 $f12, $f13,$f14,$f15

s1,n1,s2,n2 $f12, $5,$f14,$7

n1,s1,n2,s2 $4,$f13,$6,$f15

n1,s1,n2,n3 $4,$f13,$6,$7

d1,d2,d3,d4,d5 $f12, $f13, $f14, $f15, $f16

d1,d2,d3,d4,d5,s1,s2,s3,s4 $f12, $f13, $f14, $f15, $f16, $f17, $f18,$f19,stack

d1,d2,d3,s1,s2,s3,n1,n2,n3 $f12, $f13, $f14, $f15, $f16, $f17, $10,$11, stack

12

Chapter 2: Calling Convention Implementations

Implementation Differences

This section lists differences between the 32-bit and the 64-bit C implementations.
Because all of the implementations adhere to the ANSI standard, and because C is a
rigorously defined language designed to be portable, only a few differences exist
between the 32-bit, n32, and 64-bit compiler implementations. The areas where
differences can occur are in data types (by definition) and in areas where ANSI does not
define the precise behavior of the language. In this area the n32 ABI is like the current
32-bit ABI. Thus, it is easier to port to the n32 ABI than to the 64-bit ABI.

Table 2-3 summarizes the differences in data types under the 32-bit and 64-bit data type
models.

As you can see in Table 2-3, long ints, pointers, and long doubles are different under the
two models.

a. On ucode 32-bit compiles the long double data type generates a warning message indicating
that the long qualifier is not supported. It is supported under n32.

Table 2-3 Differences in Data Type Sizes

C type 32-bit and N32 64-bit

char 8 8

short int 16 16

int 32 32

long int 32 64

long long int 64 64

pointer 32 64

float 32 32

double 64 64

long doublea 64 (128 in n32) 128

ABI Attribute Summary

13

ABI Attribute Summary

Table 2-4 summarizes the important attributes for the o32 and n32/64-bit ABI
implementations.

Table 2-4 ABI Attribute Summary

Attribute o32 N32/64-bit

Width of integer
parameters in registers

32 bits 64 bits

Stack parameter slot size 32 bits 64 bits

Types requiring multiple
registers or stack slots

(long) double, long long long double

Stack region alignment 16 byte 16 byte

Integer parameter
registers

$4..$7 $4..$11

Floating point parameter
registers (single/double
precision)

$f12, $f14 $f12 .. $f19

Floating point parameters
in Floating point registers

(not varags)

first two only, not after
integer parameters

any of first eight

Floating point parameters
in Floating point registers

(varags)

first two only, not after
integer parameters

prototyped parameters
only

Integer parameter register
depends on earlier
floating point parameter

Yes No

Justification of parameters
smaller than slot

integer: left

float: N/A

integer: left

float: Undecided

Placement of long double
parameters

register: $f12/$f14

memory: aligned

register: even/odd

memory: aligned

14

Chapter 2: Calling Convention Implementations

Sizes of structure
components that are
passed by registers

32 bits 64 bits

Are structure fields of type
double in floating point
registers?

Never If not unioned

Justification of structs in
partial registers

left left

Who saves area for
parameter registers

caller callee, only if needed

Structure results limited to
one or two FP fields in
registers

FORTRAN COMPLEX
only

Always

All types of structure
results in registers

never up to 128 bits

Structure results via first
parameter result in $2

yes no

Callee-saved FP registers $f20..$f31 pairs $f24..$f31 all (64-bit)

$f20..$f31 even (n32)

Single exit block? yes, sometimes ignored no (option)

Return address register ABI: $31

.mask support

any

GP register caller-saved callee saved

Use of odd FP registers double halves arbitrary

Use of 64-bit int registers never (MIPS 1) arbitrary

Table 2-4 (continued) ABI Attribute Summary

Attribute o32 N32/64-bit

